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Abstract

Hydrolyzed proteins have an advantage over intact proteins in terms of their rate of digestion and absorption. The
high-pressure enzymatic extraction (HPE) method has been shown to improve the quality characteristics of hydro-
lysates from Protaetia brevitarsis seulensis (Kolbe) larvae (PBSL). This study investigated the effects of the HPE
treatment period, a key candidate factor, on the quality characteristics of PBSL HPE hydrolysates. The hydrolysates
were prepared by HPE for 0, 12, 18, 24, 30, and 36 h under optimized conditions—solid:solvent ratio (1:14 [w/v]),
using complex proteases (Alcalase:Flavorzyme:Bromelain = 1:1:1, 4%), treatment temperature (50

o

C), and pressure
level (100 MPa). All quality characteristics tended to be superior with longer HPE treatment periods, most of which
had the highest values at 30 h, with no significant difference or a slight decrease after that. The quality character-
istics of the PBSL HPE hydrolysates were improved by 1.3-1.7 times under conditions of optimal HPE treatment
period.
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Introduction

The white-spotted flower chafer, Protaetia brevitarsis

seulensis (Kolbe), is mainly distributed in East Asia (Yeo et al.,

2013). Its life cycle consists of embryonic, larval, pupal, and

adult stages. Of these, the larval stage is the longest. At this

stage, the larvae supply and store energy for the rest of the

lifecycle. Therefore, they are considered the most nutrient-rich

(Kwak et al., 2014; Kim et al., 2020a). In 2016, the Ministry of

Food and Drug Safety approved Protaetia brevitarsis seulensis

larvae (PBSL) as a temporary food resource (Im et al., 2018;

Choi et al., 2020). Furthermore, PBSL has also attracted

attention for the development of novel materials that include

not only functional foods but also feed, cosmetics, and

pharmaceuticals (Lee et al., 2017; Choi et al., 2020). However,

despite the numerous practical advantages, the scientific work

on insects as food industrial materials is at a naive stage

compared to studies on plants or animals because of its

repulsive appearance (Yeo et al., 2013). Therefore, the research

interests in developing protein-processing technologies capable

of overcoming consumer prejudice against edible insects have

increased (Mishyna et al., 2019; Kim et al., 2021).

It is well known that protein hydrolysates are easier to digest

and more easily absorbed than intact proteins. Therefore,

several studies have emphasized the need for developing

health-functional foods based on protein hydrolysates from

PBSL (Koopman et al., 2009; Kwak et al., 2014; Kim et al.,

2020b). Furthermore, it has been shown that various processing

methods, including physical treatments or biological treat-

ments, can improve the food quality or the extraction yield of

hydrolysates (Cha et al., 2010; Park et al., 2016). Of the

several methods, the high-pressure extraction process in which

the temperature and pressure are evenly transferred to the cell

membrane owing to the pressure equalization has been shown

to increase the degree of solubility of the cell membrane

components and functional components, thereby improving

the yield and quality of the extract even at low temperatures

(Shouqin et al., 2004; Koo et al., 2007; Kim et al., 2015; Kim

et al., 2017). Furthermore, recent studies have demonstrated

the synergistic effect of the combination of high-pressure

treatment and enzymatic hydrolysis on the increased yield of

protein hydrolysates (Eisenmenger & Reyes-De-Corcuera,

2009; Kim et al., 2020b). It has also been shown that

bioactive substances with low molecular weight obtained by

high-pressure treatment maximize digestion and absorption in
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vivo (Lee et al., 2016). Therefore, it is expected that such

substances could be useful to develop commercial products

with different functional characteristics. However, the degree

of decomposition and reaction may vary depending on various

factors such as food type, characteristics, and temperature. For

instance, at a pressure of 100 MPa or less, the enzymatic

reaction rate varies depending on the denaturation of the

substrate, stabilization of the enzyme structure, and enhance-

ment of the enzyme-substrate binding affinity (Kim et al.,

2018). Therefore, it is necessary to select the conditions of

various process variables to obtain the desired outputs (Butz et

al., 1994).

In a previous study, we investigated the production of

protein hydrolysates from PBSL using different extraction

methods, including high-pressure enzymatic hydrolysis (Kim

et al., 2020b). The study focused on the effects of enzymes and

showed that the extraction yield, protein content and yield, and

amino acid profile of PBSL hydrolysates obtained by high-

pressure enzymatic extraction (HPE) increased 3.4 - 4.4 times

compared to the other extraction method. Furthermore, Li et

al. (2017) have shown that prolonged high-pressure treatment

period could increase the contact between the solvent and

solute contact for a longer duration, thereby increasing the

extraction yield. Based on these findings, it was hypothesized

that optimization of the HPE treatment period, another

important factor in the HPE process, could maximize the

production efficiency and quality characteristics of HPE

hydrolysates from PBSL. To test this hypothesis, the present

study was aimed to analyze the quality characteristics of

protein hydrolysates prepared from PBSL during various HPE

treatment periods to optimize the conditions for extraction of

high-quality PBSL hydrolysates. 

Materials and Methods

Experimental materials and reagents 

PBSL was obtained in powder form from Hongbaengyi of

Maisan Mountain in Jinan, Jeonbuk, Korea, and stored in a

frozen state. The obtained PBSL powder had a total protein

content of 49.54±3.31 g/100 g and a moisture content of 5.15

±0.02 g/100 g. Alcalase 2.4 L and Flavourzyme 1,000 L were

purchased from Novo Nordisk (Bagsvaerd, Denmark), and

Bromelain was purchased from Great Food (Bangkok,

Thailand).

Gel Filtration Calibration Kit Low Molecular Weight (28-

4038-41; GE Healthcare, Uppsala, Sweden) was used for gel

permeation chromatography (GPC) analysis, and 16 amino

acids (glutamic acid, proline, aspartic acid, glycine, lysine,

tyrosine, leucine, valine, serine, alanine, arginine, isoleucine,

phenylalanine, threonine, histidine, and methionine) purchased

from Sigma-Aldrich Chemical Co. (St. Louis, MO, USA)

were used for amino acid analysis.

All other reagents were purchased from Sigma-Aldrich and

JT Baker (Phillipsburg, NJ, USA).

Preparation of HPE hydrolysates from PBSL

PBSL powder (50 g) was mixed with 10 mM sodium

phosphate buffer (pH 5.8) in a ratio of 1:14 (w/v), followed by

the addition of Alcalase 2.4 L, Flavourzyme 1,000 L, and

Bromelain each at 4% (w/w) relative to the substrate. The

mixture was sealed and placed in a pressure vessel of the HPE

equipment (TFS-2L, Innoway Co., Bucheon, Korea). The

equipment had a capacity of 2 L, a pressure range up to 100

MPa, a temperature range from 25 to 79
o

C, and the treatment

time could be adjusted from 1 min to 99 h. In this study, the

pressure and temperature were set at 100 MPa and 50
o

C,

respectively. HPE was performed for different treatment

periods (0, 12, 18, 24, 30, and 36 h); at the end of each

treatment period, the pressure was automatically released. The

extracted sample was immediately removed and thermo-

inactivated at 100
o

C for 10 min. After centrifugation at 13,000

× g for 20 min, the supernatant was collected by filtration

(Whatman filter paper No. 4). The supernatant was lyophilized

and stored at -20
o

C as powdered "HPE hydrolysate" for

subsequent analysis.

Measurement of yields

The extraction yield was calculated as the percentage of the

weight of lyophilized HPE hydrolysates to the weight of PBSL

used for extraction. 

Protein yield was defined as the percentage of protein

content in the HPE hydrolysates to the raw protein content in

the PBSL. The protein content was measured using the

Kjeldahl method by multiplying the total nitrogen content in

the digested fraction after hydrolyzing HPE hydrolysates by

the nitrogen-to-protein conversion factor (6.25) as described

by Kim et al. (2020b).

Determination of molecular weight distribution (MWD)

of HPE hydrolysates

The MWD of HPE hydrolysates was determined by the

GPC method following the procedures described previously

(Kim et al., 2020b). Briefly, the HPE hydrolysates were

diluted to 2 mg/mL in HPLC water and filtered through a 0.45
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μm polyvinylidene fluoride filter. The GPC was performed using

an Agilent 1260 series HPLC system (Agilent Technologies,

Santa Clara, CA, USA) equipped with a Superdex 7510/300

GL (17-5174-01, GE Healthcare) column. The mobile phase

was 50 mM phosphate buffer (150 mM NaCl, pH 7.2). A flow

rate of 0.5 mL/min and column temperature of 25
o

C were

maintained for 70 min. The injection volume was 100 μL, and

the wavelength of the UV detector was set at 280 nm.

Analysis of amino acid composition

Approximately 5 g of the HPE hydrolysate was hydrolyzed

with 6 mol/L HCl at 105
o

C for 24 h under nitrogen. The

hydrolysate was evaporated at 40
o

C under vacuum. The dried

residue was then dissolved in 3-5 mL HCl (0.02 mol/L) and

filtered through a 0.20 µm membrane filter (Life Science, MI,

USA). Amino acid analysis was carried out using a Hitachi L-

8800 amino acid analyzer (Tokyo, Japan) with an ion-

exchange resin column (4.6 mm i.d. × 60 mm). 

Statistical analyses

One-way analysis of variance was used for statistical

analysis followed by multiple range Duncan test using SAS

9.3 version (SAS Institute Inc., Cary, NC, USA). In all

statistical comparisons, the differences were declared signifi-

cant at a p-value <0.05.

Results and Discussion

This study demonstrates the influence of HPE treatment

period on the production of protein hydrolysates from PBSL

by HPE. PBSL was hydrolyzed by HPE for 0, 12, 18, 24, 30,

36 h, wherein the other parameters of the HPE process were

set at previously optimized conditions (Kim et al., 2020b). 

The extract yield is a deciding parameter to evaluate the

performance of the production process and the quality

characteristics of the output (Nam, 2005). Therefore, we

calculated and compared the yields of the HPE hydrolysate

products prepared at various extraction times in the present

study (Table 1). The results clearly illustrated the significant

effect of HPE treatment period on the yields of HPE

hydrolysates. The extraction yield was higher in samples

subjected to longer HPE treatment. It was the highest at 30 h

(40.09±0.03 g) and decreased thereafter. The protein yield also

showed the highest values at 30 h; however, they were not

significantly different from the contents estimated at 24 h.

These results suggest that enzyme catalysis was accelerated

under high pressure, increasing the dissolution of insoluble

components and the elution of internal substances such as

amino acids (Kim, 2009). Phhisit et al. (2017) reported that the

addition of protease to corncobs and high-pressure treatment at

100 MPa, 50
o

C, for 10 min increased the enzyme efficiency by

180% compared to that of hot water extraction, resulting in the

effective removal of hemicellulose. They also mentioned that

the pressure energy changed the distribution of hydrophobic

bonds and the cohesiveness of useful components in the

plant cell wall, resulting in an increased extraction yield. In

congruence, the synergistic effect between pressure and

enzymatic hydrolysis is confirmed in this study, and the effect

is demonstrated to be higher with increasing HPE treatment

period. Furthermore, the tendency of the yield to increase with

prolonged high pressure treatment was confirmed by Li et al.

(2017) via analysis of the high-pressure extraction of

astaxanthin from shrimp shells. Taken together, it can be

inferred that in the HPE process, an appropriate HPE treatment

period is crucial to maximizing the yield.

The smaller molecular weight of a bioactive substance

accelerates its acceptability as a value add to the functional

food materials, as smaller compounds are more easily digested

and absorbed in vivo. Therefore, the MWD of bioactive

substances has been suggested as a key parameter to determine

the quality characteristics of the product (Jin et al., 2009;

Koopman et al., 2009). In this study, the GPC method, which

provides information on MWD relatively quickly, was used

(Holopainen et al., 1997). The analysis showed that the

distribution of low molecular weight (< 1 kDa) components in

the HPE hydrolysates increased as the HPE treatment period

increased (Table 1 and Fig. 1). In particular, there was a

change in the peaks at 150-1000 Da and less than 10 Da, and

the change was clearly observed for 0-18 h, which may mean

that the MWD of the HPE hydrolysates changes rapidly within

24 h. Initially (treatment time of 0 h), 51.89% of the total dry

Table 1. Quality characteristics of HPE hydrolysates from
Protaetia brevitarsis seulensis larvae with different HPE
treatment periods

Treatment 
period  (h)

Extraction yield 
(%)

Protein yield 
(%)

Distribution of LMW 
(< 1 kD) (%)

0 58.36±0.09
e

55.55±1.03
d

51.89±0.20
d

12 80.01±0.11
d

87.57±0.63
c

65.08±0.08
c

18 83.31±0.02
b

91.04±0.27
b

65.82±0.06
b

24 83.00±0.09
b

93.50±0.69
a

66.98±0.36
a

30 84.50±0.06
a

94.44±0.27
a

67.14±0.03
a

36 82.42±0.23
c

91.42±0.48
b

67.32±0.24
a

All values are presented as mean±SD (n = 3).
a-e

Values with different superscripts in a column indicate a significant
difference (p<0.05) by Duncan's multiple range test.
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matter from the HPE hydrolysates had molecular weight < 1

kDa, which increased with increasing treatment period and

was the highest at 36 h (67.32%); however, it was not

significantly different from those obtained at 24 h (66.98%)

and 30 h (67.14%). 

Furthermore, amino acids play an important role in

determining the function and taste characteristics of food; thus,

the composition and content of amino acids in protein

hydrolysates are also important quality evaluation indices

(Parsons et al., 1997; Kim et al., 2020b). The amino acid

compositions of the HPE hydrolysates from PBSL according

to HPE treatment period are shown in Table 2. Similar to other

analysis results, the amino acid content was higher in HPE

hydrolysates that were treated for longer. Both the total amino

acid content and the essential amino acid content reached a

significant peak at 30 h, showing favorable results not only in

terms of content but also in composition. In the case of

essential amino acids, the increased rate was highest for

methionine, phenylalanine, isoleucine, leucine, and valine (up

to 2, 1.8, 1.6, 1.5, and 1.4 times, respectively). Methionine

reportedly prevents related diseases by regulating metabolic

processes and the immune response (Martínez et al., 2017).

Phenylalanine is an important precursor of many aromatic

compounds required for normal body functions, contributing

to blood vessel protection, mental stability, brain cell

regeneration and hormonal activity (Harper, 1984). Isoleucine,

leucine, and valine are branched-chain amino acids with

important roles in human muscle activity as they are primarily

oxidized in skeletal muscle and are used as an energy source

by muscle cells (Sowers, 2009). Meanwhile, in the case of

Fig. 1. GPC chromatogram of HPE hydrolysates from Protaetia brevitarsis seulensis larvae with different HPE treatment
periods.
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non-essential amino acids, tyrosine and serine exhibited a

particularly high increase (up to 2.7, and 1.4 times,

respectively). Serine promotes insulin secretion while

lowering blood cholesterol and blood sugar levels (Kuo et al.,

2020); whereas tyrosine contributes to memory improvement

(Jongkees et al., 2017). In addition, glutamic acid content,

which contributes to flavor characteristics, was increased,

suggesting that the HPE treatment for an optimized duration

could value add to HPE hydrolysates from PBSL in processed

food, seasoned food, or feed material. 

Conclusion

HPE extraction of PBSL at 30 h maximized the enzymatic

protein hydrolysis in PBSL and improved the quality

characteristics, including total soluble solid content, extraction

yield, total protein content, protein yield, MWD, and amino

acid composition of the hydrolysate. These findings demon-

strating an optimized condition for HPE could help develop

strategies to improve the industrial use of functional food

materials based on edible insects.
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